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The re la t ionship  between tempora l  and spatial  development of dis turbances in hydrodynamic stabil i ty 
is investigated.  

It  i s shown on the basis  of a plane Poiseui l le  flow that the resu l t s  of numerical  calculat ions by t em-  
pora l  and spatial  methods a re  near ly  the same.  Approximate t ransi t ional  formulas  a re  presen ted .  

Two methods may be used  to invest igate fluid-flow stabili ty.  

Tempora l  Method. At the initial instant of t ime,  per turbat ions  per iodic  in the spatial  coordina te ,whose  
amplitude is significantly lower than the average  flow velocity,  a re  imposed on the flow. The ra te  of change 
of the per turbat ion  amplitude with t ime will  also cha rac t e r i ze  the degree of flow stabil i ty.  F r o m  a math-  
emat ica l  point of view this method reduces  [1, 2] to the solution of the problem for  the eigenvalues of the 
O r r - S o m m e r f e l d  equations 

~ I v  _ 2 ~  + ~,,~ = i~R [(C - -  u) (~" - -  ~'~p) + ~"~] ( I )  

~" = m (y) e ~ (~-c~), c = X + ~y (2) 

Here ~=~ (y) is the complex amplitude of the stream function ~ for perturbations; x is the coordi- 
nate along the flow; y is the coordinate perpendicular to the flow; a is a real parameter-  the wave number 
of the perturbations; and C is the desired eigenvalue. The problem is considered for uniform boundary 
conditions for the function ~p. 

Spatial Method. At the initial cross section of the channel, small-amplitude perturbations which are 
periodic with time are imposed on the flow, and their propagation along the flow is studied. In this case 
the degree of flow stability is characterized by the damping rate of the perturbation amplitude with respect 
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to the spatial  coordinate .  This method is more  "phys ica l ,  s ince it 
co r responds  m o re  closely to the conditions of the exper iment .  It r e -  
duces [3] to the problem for  the eigenvatues of the equations 

~IV_2g~,,_~ K4~= iR [(co-- Ku) (~" - -  K ~ )  ~ Ku ~ ~] (3) 

~F=T(y)e i(~t-Kx), K=Kr--~iK i (4) 

Here  ~ = ~  (y) is the complex amplitude of the s t r e a m  function 
r for  the per turbat ions ;  w is a rea l  p a r am e te r  - the f requency of osc i l -  
lat ions at  a given c ross  section; and K is the des i red  eigenvalue.  

It is of in te res t  to de termine  whether  a quali tat ive analogy exis ts  
between the r e su l t s  obtained by these two methods,  since conclusions 
pertaining to the degree of stabil i ty based on only one of them cannot 
be t r e a t ed  as complete ly  general .  To this end we cons ider  both types 
of per turbat ions  with identical wavelength in the spatial  coordinate  

o~ = Kr (5) 
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In the t empora l  case the change in amplitude with t ime at the point moving with the phase veloci ty  
follows the re la t ionship 

(0 = ~ (to) ~Y~ 

In the spatial  case  for  this point x = ( w / K r ) t ~ n d  f ro m  Eq. (4) we obtain 

(t) = T (to) e (K~IKr) t 

We now follow the change in amplitude at  this point over  the spatial coordinate.  In the spatial  case,  
in accordance  with Eq. (4) 

(x) = ~ (~0) e ~i~ �9 

In the tempora l  case,  since x= Xt at the given point, f rom Eq. (2) we obtain 

(x) = ~ (z0) e ( ~ r / x ) x .  . 

If it is a s sumed  that for  equal spatial  wavelengths (5) spatial  a s  weli  as tempora l  damping coef-  
f icients  a r e  approximate ly  the same for  both eases ,  we have 

(zY z Kia) / Kr, K~ ,-~ a Y  / X ,  or X ,.~ o)gr.  ( 6 )  

F r o m  these equations we have 

g ~ ,  ~ ~ czx, (7) 

It is shown in [4] that for  smal l  values  of aY these  equali t ies  a r e  val id to an accuracy  to O ((~y)2) 
in the vicini ty of the neutra l  curve .  Natural ly,  on the neutra l  curve where  Ki=Y =0, there  is agreement ;  
at o ther  points such agreement  may not occur .  In the f i r s t  case  waves of identical amplitude propagate 
along the flow and are  damped or amplified; in the second ease waves of different  amplitude are  involved. 

A numer ica l  solution of Eqs.  (1) and (3) for  a plane Poiseui l le  flow was obtained by the method de- 
sc r ibed  in [2] at a Reynolds number,  based on a maximum velocity,  of R=104 in o rd e r  to compare  the two 
methods.  The solid l ines in Fig. 1 denote the r e su l t s  computed by the spatial  method, and the dashed l ines 
co r respond  to the tempora l  method taking Eqs.  (6) and (7) into account.  The points corresponding to neu- 
t r a l  f requencies  coincide, as expected.  The deviation at remaining points is not la rge .  

The asymptot ic  behavior of Ki fo r  small  w may be obtained f rom Eq. (3) by setting w = K r = 0  (since 
the phase veloci ty  is finite at  low frequencies)  and u = l  (since the damping decrement  for  long wavelengths 
is weakly dependent on the veloci ty  profi le) .  For  symmet r i c  functions ~ (y) this leads to the following equa- 

tion: 

]/ 'Ki ~ - -  RK i  tg ~ f ~  - -  R K i -  g i  tg K~ 

whose solution for  smal l  K i is close to the value K i =-~r2/R. For  t empora l  damping, in accordance wi th  
[5], one may obtain the following asymptot ic  re la t ionship  for  smal l  a :  

a Y  ~ 
X = - -  ~ X -  ' X ~ 0.62 

The approximate ag reement  may be used for the solution of technical  problems and also in the choice 
of s tar t ing  points for  the numer ica l  computation.  

The author thanks M. A. Gol 'dshtik for  exhibiting continued in te res t  in the work and for  his sugges-  

t ions.  
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